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Abstract

Molecular anomalies in MED13L, leading to haploinsufficiency, have been reported in patients with moderate to severe intel-
lectual disability (ID) and distinct facial features, with or without congenital heart defects. Phenotype of the patients was referred
to “MEDI3L haploinsufficiency syndrome.” Missense variants in MEDI3L were already previously described to cause the
MED]I3L-related syndrome, but only in a limited number of patients. Here we report 36 patients with MEDI3L molecular
anomaly, recruited through an international collaboration between centers of expertise for developmental anomalies. All patients
presented with intellectual disability and severe language impairment. Hypotonia, ataxia, and recognizable facial gestalt were
frequent findings, but not congenital heart defects. We identified seven de novo missense variations, in addition to protein-
truncating variants and intragenic deletions. Missense variants clustered in two mutation hot-spots, i.e., exons 15-17 and 25-31.
We found that patients carrying missense mutations had more frequently epilepsy and showed a more severe phenotype. This
study ascertains missense variations in MED3L as a cause for MED13L-related intellectual disability and improves the clinical
delineation of the condition.

Keywords MEDI3L - Intellectual disability - Mediator complex - Cardiopathy

Introduction

Mediator is a large coregulator complex conserved from
yeast to humans. The complex has emerged as a master
coordinator of cell lineage determination, integrating sig-
naling from various transcription factors, epigenetic regu-
lators and non-coding RNAs [1]. In response to various
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stimuli, mediator undergoes conformational changes and
creates a DNA loop between activated enhancer elements
and promoter, notably through interactions with cohesins
[1]. Mediator physically bridges transcription factors
bound at enhancer elements with the RNA polymerase 11
transcription machinery at core promoter regions [1].
Mediator is organized into four modules, i.e., the tail-,
the middle-, the head-, and the CDKS8-kinase module
[2]. In vertebrates, the latter module is composed of
CCNTI1 and three additional proteins: CDK8, MED12,
and MED13; or their respective paralogs: CDK19,
MEDI12L, and MEDI13L [3]. Disease-causing variations
have been identified in genes encoding the CDKS-
module proteins. MED2 variants cause syndromic intel-
lectual disabilities (ID), namely Opitz-Kaveggia syndrome
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(MIM #305450), Lujan-Fryns syndrome (MIM #309520),
and Ohdo syndrome (MIM #300895) [4]. CDK19 inter-
ruption by a translocation breakpoint has been found to
cause moderate ID with microcephaly and retinal folds in
a patient [5]. Recently, MEDI13L haploinsufficiency have
been identified in patients with moderate to severe ID,
hypotonia, and distinctive facial gestalt (OMIM
#616789) [6—10]. The recognizable syndrome was delin-
eated by Asadollahi et al. [7] and broadened by further
reports [6, 8, 10—15]. The gene is located on chromosome
12q24.21 and encodes MEDI13L (alias TRAP240L),
expressed in heart and brain tissues [9]. Originally, the
interruption of MEDI3L by a translocation breakpoint
was identified in a patient with dextro-loop transposition
of the great arteries (dATGA- MIM #608808) and intellec-
tual disability (ID). Given that association, a cohort of 97
individuals with isolated dTGA was screened for
MEDI3L sequence variations. Rare heterozygous mis-
sense variants were identified in four patients [9].
Familial segregation was not available for three variants
and showed that the remaining variant was inherited from
a healthy parent [9]. Updated annotations of the four var-
iations showed that the variant ¢.2056A>C was reported
472 times in GnomAD database (http://gnomad.
broadinstitute.org/). Variants c¢.752A>G and c.6068A>G
were reported in GnomAD database once and the variant
¢.5615G>A was reported once in 1000G database (http://
www.internationalgenome.org/). Therefore, clinical
relevance of these variants remains unclear. It was
hypothesized that missense variants were associated with
congenital heart defects (CHDs), particularly dTGA,
without intellectual disability [10].

To date, 33 additional patients with a MED13L variants
or intragenic deletion were reported [6-8, 10, 12, 13,
15-22]. The DDD studies identified at least 19 patients
with a MEDI3L variant, highlighting MEDI3L as one of
the most common ID-causing gene [14, 23]. Variants were
either identified by targeted sequencing, indicating that
the condition could be suspected prior to the molecular
analysis, or by exome sequencing [12]. Strikingly, no fur-
ther dTGA was found and all patients presented with ID,
characteristic facial gestalt, and less commonly aspecific
CHD in 6/25 cases (patent foramen ovale, Fallot tetralogy,
pulmonary atresia). To our knowledge, seven missense
variants were identified in 11 patients, but the lack of
precise clinical data in most of them precluded clarifica-
tion of their clinical relevance or possible genotype-
phenotype correlation [8, 13, 14, 17]. Here, we report on
36 patients with MED 3L variations affecting its function,
including seven missense variants in nine patients. We
aim to better delineate the phenotype and discuss possible
genotype-phenotype correlation.
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Subjects and methods
Patients

Thirty-six patients from 35 families were recruited through an
international collaboration between centers of expertise for
developmental anomalies. All patients were clinically exam-
ined by a clinical geneticist. Two patients have been published
previously, but more detailed information was reported here:
P7 (ref. [19]) and P8 (ref. [18]). Informed consents were ob-
tained for genetic tests, data sharing, and publication of pa-
tients’ photographs.

Genetic analyses

Molecular investigations were performed in different diagnos-
tic laboratories according to their routine procedure regarding
testing in patients affected with ID. MED13L intragenic dele-
tions were identified by array-CGH. MED13L sequence vari-
ants were identified by either next generation sequencing of
custom gene panels designed for ID (P5, P6, P7, P8, P9, P10,
P11, P23, P25, P26, P27, and P31) [19, 24] or by whole
exome sequencing for the other patients. Missense variations
were evaluated using the Alamut interface (Interactive
Biosoftware, Rouen, France). Pathogenicity scores were pre-
dicted in silico with SIFT (http://sift.jevi.org), PolyPhen2
(http://genetics.bwh.harvard.edu/pph2/), and MutationTaster
(http://www.mutationtaster.org/) softwares. All coordinates
are provided for NM_015335.4 transcript in hgl9 (genome
build: GRCh37) and NP_056150.1 protein. Variant data
have been submitted to ClinVar (https://www.ncbi.nlm.nih.
gov/clinvary).

Results
MED13L molecular anomalies

MEDI3L intragenic deletions, ranging in size from 47 to
200 kb, were identified in five patients (P1, P2, P3, P4, and
P24) (Fig. 1 and Table 1). When available, parental segrega-
tion showed that these occurred de novo. We identified a
MEDI3L sequence variants in 31 patients from 30 families.
In one family, recurrence in two sibs (P12 and P13) was ob-
served, presumptively due to parental germinal mosaicism.
Protein-truncating variants were identified in 27 patients and
were distributed all over the gene (Fig. 1a). One protein-
truncating variant, ¢.1708 1709del, was identified in two un-
related patients (P7-P15). Four variants were predicted to af-
fect splicing (c.5588 + 1G>A - ¢.1009 + 1G>C and c.2345-
3C>Gand ¢.6225 + 1G>A). Variant ¢.1009 + 1G>C was iden-
tified in two unrelated patients (P25-P30). Seven likely
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Fig. 1 a Summary of MEDI3L variants reported in the literature and in
our cohort. Truncating variants are represented above the gene and
missense variants under the gene. Asterisks indicate recurrent missense
variants. Inter-species conservation of MEDI3L missense variations
identified in the literature and in our series is shown. H.s, Homo

pathogenic heterozygous missense variants were identified in
nine patients (P14, P20, P21, P22, P23 P28, P32, P33, P35):
¢.2597C>T p.(Pro866Leu); ¢.2605C>T p.(Pro869Ser);
¢.2930C>T p.(Ala977Val); ¢.6005C>T p.(Ser2002Leu)
c.6485C>T p.(Thr2162Met); ¢.6488C>T p.(Ser2163Leu)
¢.6530C>A p.(Ser2177Tyr) and were absent from GnomAD
and ExAC database in well-covered regions. Both missense
variants ¢.2605C>T p.(Pro869Ser) and c.6488C>T
p-(Ser2163Leu) were identified in two unrelated patients, re-
spectively in P28-P35 and P21-P23. Patient P20-P14 and P33
carried respectively the previously reported variants

sapiens; M.m, Mus musculus; D.r, Danio rerio. b Schematic
representation of MED13L and location of intragenic deletions reported
in our cohort (P1-P2-P3-P4 and P24) and in the literature, indicated by
horizontal bars

¢.2597C>T p.(Pro866Leu), c.6005C>T p.(Ser2002Leu), and
c.6485C>T p.(Tr2162Met)[14]. All missense variations were
predicted to be “probably damaging” for PolyPhen2 (score >
0.98) and deleterious” for SIFT (score < 0.03). The seven mis-
sense variants were predicted to induce substitutions involv-
ing Pro866, Pro869, Ala977, Ser2002, Thr2162, Ser2163, and
Ser2177 residues, which are highly conserved across verte-
brates (PhyloP score 5.69 to 6.18—Fig. 1a). Except for
Ala977, which presented a PhyloP score of 6.18, residues
involved in these substitutions are also conserved in
MED13, the MED13L paralog (Fig. 1).
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a

Fig. 2 Morphological features of a selection of patients. a Patients with
protein-truncating variants. Core facial features comprises depressed
nasal bridge, horizontal eyebrows, full cheeks, and large open mouth.
Majority of patients show also cupid-bow upper lip, thin vermilion
border, and deep philtrum. b Patients P20-P28 and P35 (at different

Phenotypic findings
Patient with protein-truncating mutation

Protein-truncating variants were identified in 27 patients. No
remarkable prenatal history was reported and birth parameters
were normal for all individuals. Motor skills were delayed,
median age for independent walking being 25 months (range
from 17 to 41 months). One patient did not achieve walking
but he was only 32-month-old. Speech was also severely im-
paired in most individuals, composed of few words (16/21—
52%) or even absent (5/21-24%). All patients showed mod-
erate to severe ID. Global hypotonia was observed in 20/25
(80%) patients. Ataxia was noticed in 9/25 patients (36%),
consisting mainly in dynamic ataxia and dysarthria in four
patients. We did not retrieve age at onset of the cerebellar
signs, but mean age of the patients with ataxia was 12 years
(ranging from 2 to 39 years). One patient presented with

age) show atypical facial gestalt with long down-slanting palpebral
fissures and everted lower eyelids. ¢ Some patients, notably in infancy
have broad, stubby, and tapering fingers. Feet showed long halluces and
sandal-gap deformity in some patients. d Photo enlargement of the
palpebral features of patients P20-P28 and P35

seizures (1/26-4%). Autistic features were noticed in 5/21
(24%) cases and behavioral troubles in 10/26 (39%),
consisting in aggressive behavior when specified. Brain mag-
netic resonance (MRI) imaging showed various non-specific
anomalies comprising ventriculomegaly, myelination defect,
corpus callosum anomaly, or focal cortical dysplasia (Table 1).
Majority of the patients shared common facial features with
wide open mouth, protruding tongue (without macroglossia),
full cheeks, bulbous nasal tip, and horizontal eyebrows. Some
patients showed thin vermilion, deep philtrum, and cupid-bow
upper lip (Fig. 2 and Table 1). Echocardiography revealed
patent foramen ovale in two patients (P1) and pulmonary val-
vular stenosis in one patient (P25) (Supplemental Table 1).

Patient with missense variation

Missense variants were identified in nine patients. Intra-Uterine
Growth Retardation (IUGR) was observed only in P33. Median
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age for independent walking was also 25 months (range from
18 to 30 months), but 4/9 patients (44%) were not able to walk
at the age of examination (P20-P28-P33-P35). The latter pa-
tients either did not achieve independent walking (P28-P33)
or achieved independent walking and then lost ability to walk
because of worsening of epilepsy (P20-P35). Speech was absent
in 5/9 patients (56%) and composed of few words in 4/9 patients
(44%). Global hypotonia was observed in 6/9 patients (67%).
Ataxia was noticed in 3/7 patients (43%). Six patients presented
with seizures 6/9 patients (67%), consisting in febrile seizure
(P32), late onset infantile spasms (P20) and Lennox-Gastaut
syndrome (P35). Abnormal brain magnetic resonance imaging
(MRI) showed various non-specific anomalies in 4/7 patients
(57%), comparable with these found in patients with protein-
truncating variations (supplemental Table 1). We observed atyp-
ical facial features in three patients (P20-P28-P35). They
showed long down-slanting palpebral fissures, with everted
lower eyelids (Fig. 2d). Echocardiography revealed a patent
foramen ovale in one patient (P33) (Table 1).

Discussion

Here we report on a cohort of 36 patients carrying MEDI3L
anomalies, including two previously published cases, allowing
a better delineation of the associated phenotype. All individuals
had motor delay, speech delay, and moderate to severe ID. In
most patients, language was limited to few words or was even
absent. Patients showed various degrees of cerebellar dysfunc-
tion. Ataxia was observed in 11/32 patients, and was reported
especially in the older cases (P9 —P10-P13-P15-P17-P20-P23-
P32-P32-P36). Since this feature was under-reported in youn-
ger patients, we hypothesize that cerebellar involvement prob-
ably worsened with age. No patient showed cerebellar anomaly
on brain MRI, but repeated imaging may be needed to explore
possible progressive atrophy. MRI identified aspecific features
comprising myelination defects, corpus callosum abnormali-
ties, white matter anomalies, ventriculomegaly and focal corti-
cal dysplasia. This study confirms that most patients show a
recognizable facial gestalt, which could phenotypically overlap
with deletion 1p36 microdeletion syndrome (OMIM# 607872)
in some patients [12]. Core facial features comprise depressed
nasal bridge, horizontal eyebrows, full cheeks, and large open
mouth [7, 12]. More subtle features like cupid-bow upper lip,
thin vermilion border, and deep philtrum can be observed.
However, in a few patients, these core facial features were
absent (P22-P27). We also noticed that non-recurrent facial
features can be associated, especially in patients with a mis-
sense variant located in the exon 15 (P20-P28-P35) (Fig. 2b). In
our cohort, patients were not suspected with the condition prior
to genetic testing, but secondarily facial comparison allowed
the description of common features. These data highlight the
valuable role of clinical geneticists in the precision of the
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phenotype, a critical step to determine the pathogenicity of
MED]I3L-variants.

We found only three patients with CHD, consisting in patent
foramen ovale or pulmonary valvular stenosis but no complex
CHD (Table 1). Patients carried respectively MEDI3L intra-
genic deletion, splice-site variant, and missense variant (P1-
P25-P33), confirming that frequency of complex CHD is less
than initially expected and is not correlated with MED3L-mis-
sense variants. Concerning patients reported by Muncke et al.,
showing dTGA and probably no developmental delay [9], it is
unlikely that their variants affect the protein function. MED13L
is located next to 7BX3 and TBX5 genes. These genes respec-
tively cause ulnar-mammary syndrome (OMIM#181450) and
Holt-Oram syndrome (OMIM#142900), both conditions com-
prising CHD. Heart-specific enhancers have been identified
within regulatory domains of both genes; however, they do
not overlap with regions contacting MED13L [25].
Therefore, it is unlikely that MED3L variants could affect
cis-regulatory elements controlling 7BX3 or TBX5 expression
during heart development. Involvement of MEDI3L in the
dTGA of these patients remains to be explained.

We observed clinical variability, notably in patients who
carried recurrent variations (P12-P13; P21-P23; P7-P15; P25-
P30; P28-P35) (Table 1). As suggested by Asadollahi et al., we
found that patients with missense variants were more prompt to
develop epilepsy, compared to patients with protein-truncating
variants (4/9 versus 1/26) [8]. Severe neurodevelopmental phe-
notype (absent speech in 5/9 versus 5/21—non ambulatory 4/9
versus 1/21) and malformations are also more frequent
(Supplemental Table 1). More precisely, patients P20 and P35
lost the ability to walk consecutively to worsening of epilepsy.
They needed gastrostomy tube feeding and P35 had hearing
impairment and severe myopia. P33 showed a severe pheno-
type associating TUGR, absent speech, microcephaly,
colobomatous microphthalmia, and never achieved sitting.
Moreover, P20-P28 and P35 showed atypical facial features
with long palpebral fissures and even everted lower eyelid in
P20 and P35 (Fig. 2b). Based on these particular palpebral
features, P20 was initially diagnosed with Kabuki syndrome
(OMIM #147920). All these data are supported by clinical
features from the 11 patients reported in the literature, carrying
missense variants [8, 13, 14, 17]. Clinical details of the patients
reported by the DDD study were retrieved from Decipher da-
tabase (https://decipher.sanger.ac.uk/) and corresponded to
patients’ ID: #272205, #260542, #262717, #258131,
#268019, #262545, #265953, and #323183. Among them,
four patients had epilepsy, and two patients had IUGR and
atypical features were also noted (craniosynostosis,
microcephaly, major feeding difficulties, limb malformations).
Since patients with missense mutation seem to have a more
severe phenotype, we could hypothesize that they induce a
dominant negative effect, contrarily to protein-truncating vari-
ants. We did not consider the patient reported by Mullegama
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et al., who suffered from speech delay, ASD and Mediterranean
fever. He carried MEDI13L, DEAF1, and MEFV variants [26].
Inheritance of the MED13L missense variant ¢.5282C>T p.
(Prol1761Leu) could not be determined, since the patient was
adopted. Polyphen2 and SIFT software predicted in silico that
the variant was respectively benign and tolerated. There is no
experimental evidence of the deleterious effect on the function
of the protein. Thus, there was not enough evidence to consider
the variant as the cause of the neurodevelopmental disorder of
the patient.

The seven missense variants identified in this study, as well
as the MEDI3L-missense variants previously reported in the
literature, cluster in exons 15-17 and 25-31 (Fig. 1) [8, 13, 14,
17]. Both localizations constitute hot-spots of mutations. As
expected, majority of missense variations are recurrent [§].
Previously reported variants ¢.2597C>T p.(Pro866Leu),
¢.6005C>T p.(Ser2002Leu), ¢.6485C>T p.(Thr2162Met) were
identified in three patients [8, 13, 14, 17]. We identified four
novel missense variants in six patients: variant ¢.2605C>T
p-(Pro869Ser) was identified in two patients and as well as
variant ¢.6488C>T p.(Ser2163Leu). Variants ¢.2930C>T
p-(Ala977Val) and ¢.6530C>A p.(Ser2177Tyr) were not recur-
rent. One of the MED13/MEDI3L functions is to physically
link the CDK8-module to the core Mediator complex, mainly
by interacting with MED19 and CDKS8 [27]. Dissociation of
the CDK8-module components from the core Mediator is me-
diated by Mediator-bound MED13/MED13L ubiquitylation
and degradation [28]. Both subunits can also relay information
from temporal/spatial signals or transcription factors to the
RNA polymerase Il machinery, thus controlling the expression
of specific genes, notably genes involved in Wnt, FGF, and Rb/
E2F pathways [8]. Since all the residues involved in the sub-
stitutions are located in highly conserved across vertebrate re-
gions and even conserved in MED13, we can assume that these
residues are probably implicated in such mechanisms. Further
studies are needed to unravel the deleterious mechanism in-
duced by these molecular changes.

Conclusion

In this cohort of 36 patients with MED13L-related intellectual
disability, we confirmed recognizable facial gestalt and intellec-
tual involvement. We highlighted possible arising of progres-
sive cerebellar signs. We did not confirm congenital heart de-
fects as a major feature of the condition. Patients with missense
variant are significantly more at risk to develop epilepsy and
seemed to have a more severe phenotype, suggesting possible
dominant negative effect of the missense variants. We observed
clustering of missense variants in specific domains of the pro-
tein. Substitution involving the highly conserved across species
residues Asp860, Pro866, Pro869, Gly1899, Ser2002, Thr2162,
and Ser2163 were identified in at least two patients. Precise

roles of these domains and specific residues remain to be deter-
mined to better understand molecular mechanisms underlying
MED]13L-related intellectual disability.
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